Wheelchair-mounted robotic arms (and other assistive robots) should help their users perform everyday tasks. One way robots can provide this assistance is shared autonomy. Within shared autonomy, both the human and robot maintain control over the robot's motion: as the robot becomes confident it understands what the human wants, it increasingly intervenes to automate the task. But how does the robot know what tasks the human may want to perform in the first place? Today's shared autonomy approaches often rely on prior knowledge: for example, the robot must know the set of possible human goals a priori. In the long-term, however, this prior knowledge will inevitably break down -- sooner or later the human will reach for a goal that the robot did not expect. In this paper we propose a learning approach to shared autonomy that takes advantage of repeated interactions. Learning to assist humans would be impossible if they performed completely different tasks at every interaction: but our insight is that users living with physical disabilities repeat important tasks on a daily basis (e.g., opening the fridge, making coffee, and having dinner). We introduce an algorithm that exploits these repeated interactions to recognize the human's task, replicate similar demonstrations, and return control when unsure. As the human repeatedly works with this robot, our approach continually learns to assist tasks that were never specified beforehand: these tasks include both discrete goals (e.g., reaching a cup) and continuous skills (e.g., opening a drawer). Across simulations and an in-person user study, we demonstrate that robots leveraging our approach match existing shared autonomy methods for known goals, and outperform imitation learning baselines on new tasks. See videos here: https://youtu.be/Plh4t3wQeIA


翻译:轮椅搭乘的机器人臂(和其他辅助机器人)应该帮助其用户完成日常任务。机器人可以提供这种协助的方式之一是共享自主性。在共享自主性的范围内,人类和机器人都可以在共享自主性的范围内保持对机器人运动的控制:随着机器人相信自己想要的东西,它会越来越多地干预任务自动化。但是机器人如何知道人类最初可能想要完成什么任务?今天的共享自主性方法往往取决于先前的知识:例如,机器人必须先验地了解一套可能的人类目标。然而,从长远来看,这种先前的知识将不可避免地破碎 -- -- 迟早人类会达到机器人无法预期的目标。在本文中,我们提出一种共享自主性的学习方法,利用反复的互动。如果人类在每次互动中都执行完全不同的任务,那么学习帮助人类是不可能做到的:但是我们的洞穴操作重复重要任务(例如,打开冰箱,打开更近距离的视频,煮咖啡,吃晚宴)。我们引入了一个算法,利用这些反复的交互性互动来认识人类的任务,复制了同样的演示任务。 当我们反复学习的时候,这些任务包括了机器人的任务, 不断学习的技巧, 不断学习。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
3+阅读 · 2020年5月1日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员