Camera movement and unpredictable environmental conditions like dust and wind induce noise into video feeds. We observe that popular unsupervised MOT methods are dependent on noise-free conditions. We show that the addition of a small amount of artificial random noise causes a sharp degradation in model performance on benchmark metrics. We resolve this problem by introducing a robust unsupervised multi-object tracking (MOT) model: AttU-Net. The proposed single-head attention model helps limit the negative impact of noise by learning visual representations at different segment scales. AttU-Net shows better unsupervised MOT tracking performance over variational inference-based state-of-the-art baselines. We evaluate our method in the MNIST and the Atari game video benchmark. We also provide two extended video datasets consisting of complex visual patterns that include Kuzushiji characters and fashion images to validate the effectiveness of the proposed method.
翻译:摄影机的移动和不可预测的环境条件,如灰尘和风能,将噪音诱发到视频中。我们观察到,流行的无人监督的MOT方法取决于无噪音的条件。我们表明,增加少量人为随机噪音导致基准指标模型性能的急剧退化。我们通过采用强健的、无人监督的多物体跟踪模型(MOT)来解决这个问题:AttU-Net。拟议的单人关注模型通过学习不同区段的视觉表现来帮助限制噪音的负面影响。AttU-Net显示,在基于变异推断的先进基线方面,在不受监督的MOT跟踪性能更好。我们在MNIST和Atari游戏视频基准中评估了我们的方法。我们还提供了两个扩大的视频数据集,由复杂的视觉模式组成,其中包括Kuzushiji字符和时尚图像,以验证拟议方法的有效性。