Suppose that $n$ items arrive online in random order and the goal is to select $k$ of them such that the expected sum of the selected items is maximized. The decision for any item is irrevocable and must be made on arrival without knowing future items. This problem is known as the $k$-secretary problem, which includes the classical secretary problem with the special case $k=1$. It is well-known that the latter problem can be solved by a simple algorithm of competitive ratio $1/e$ which is optimal for $n \to \infty$. Existing algorithms beating the threshold of $1/e$ either rely on involved selection policies already for $k=2$, or assume that $k$ is large. In this paper we present results for the $k$-secretary problem, considering the interesting and relevant case that $k$ is small. We focus on simple selection algorithms, accompanied by combinatorial analyses. As a main contribution we propose a natural deterministic algorithm designed to have competitive ratios strictly greater than $1/e$ for small $k \geq 2$. This algorithm is hardly more complex than the elegant strategy for the classical secretary problem, optimal for $k=1$, and works for all $k \geq 1$. We derive its competitive ratios for $k \leq 100$, ranging from $0.41$ for $k=2$ to $0.75$ for $k=100$. Moreover, we consider an algorithm proposed earlier in the literature, for which no rigorous analysis is known. We show that its competitive ratio is $0.4168$ for $k=2$, implying that the previous analysis was not tight. Our analysis reveals a surprising combinatorial property of this algorithm, which might be helpful to find a tight analysis for all $k$.
翻译:假设美元项目以随机顺序抵达在线, 目标是选择其中的美元, 使所选项目的预期金额达到1美元/ e美元的上限。 任何项目的决定都是不可撤销的, 必须在不知晓未来项目的情况下在抵达时做出。 这个问题被称为美元- 秘书问题, 包括特例的经典秘书问题 $k= 1美元。 我们的焦点是简单的选择算法, 伴以组合分析。 我们提出一个简单的确定性算法, 其最优的计算法是1美元/ e美元, 其最优的计算法是1美元/ e 美元, 其最优的计算法不是100美元, 其最优的计算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元, 其最优的算法是1美元。