Online news can quickly reach and affect millions of people, yet we do not know yet whether there exist potential dynamical regularities that govern their impact on the public. We use data from two major news outlets, BBC and New York Times, where the number of user comments can be used as a proxy of news impact. We find that the impact dynamics of online news articles does not exhibit popularity patterns found in many other social and information systems. In particular, we find that a simple exponential distribution yields a better fit to the empirical news impact distributions than a power-law distribution. This observation is explained by the lack or limited influence of the otherwise omnipresent rich-get-richer mechanism in the analyzed data. The temporal dynamics of the news impact exhibits a universal exponential decay which allows us to collapse individual news trajectories into an elementary single curve. We also show how daily variations of user activity directly influence the dynamics of the article impact. Our findings challenge the universal applicability of popularity dynamics patterns found in other social contexts.


翻译:在线新闻可以迅速传达到并影响数百万人, 但我们还不知道是否有潜在的动态规律来管理其对公众的影响。 我们使用英国广播公司和《纽约时报》这两个主要新闻机构的数据,其中用户的评论数量可以用作新闻影响的代理。 我们发现,在线新闻文章的影响动态并不显示许多其他社会和信息系统中发现的受欢迎模式。 特别是,我们发现简单的指数分布比权力法传播更适合实证新闻影响分布。 这一观察的解释是,在分析的数据中,缺乏或影响有限,否则就无处不在的富饶富饶型机制。 新闻影响的时空动态显示普遍指数衰变,使我们得以将个别新闻截图破碎成基本单一曲线。 我们还显示用户活动的日常变化如何直接影响文章影响动态。 我们的发现挑战了在其他社会环境中发现的普惠性动态模式的普遍适用性。

0
下载
关闭预览

相关内容

【2021新书】概率论介绍,395页pdf
专知会员服务
73+阅读 · 2021年1月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
1+阅读 · 2021年3月17日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
【2021新书】概率论介绍,395页pdf
专知会员服务
73+阅读 · 2021年1月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员