Sequentially obtained dataset usually exhibits different behavior at different data resolutions/scales. Instead of inferring from data at each scale individually, it is often more informative to interpret the data as an ensemble of time series from different scales. This naturally motivated us to propose a new concept referred to as the scale-based inference. The basic idea is that more accurate prediction can be made by exploiting scale information of a time series. We first propose a nonparametric predictor based on $k$-nearest neighbors with an optimally chosen $k$ for a single time series. Based on that, we focus on a specific but important type of scale information, the resolution/sampling rate of time series data. We then propose an algorithm to sequentially predict time series using past data at various resolutions. We prove that asymptotically the algorithm produces the mean prediction error that is no larger than the best possible algorithm at any single resolution, under some optimally chosen parameters. Finally, we establish the general formulations for scale inference, and provide further motivating examples. Experiments on both synthetic and real data illustrate the potential applicability of our approaches to a wide range of time series models.


翻译:相继获得的数据集通常在不同的数据分辨率/尺度上表现出不同的行为。 与其从每个尺度的数据中单独推断出不同的行为,不如将数据解释为不同尺度的时间序列的组合。 这自然地促使我们提出一个新的概念, 称为基于比额表的推论。 基本的想法是, 利用一个时间序列的尺度信息可以作出更准确的预测。 我们首先提议一个非参数预测器, 以美元最远的邻居为基础, 以最佳选择的美元为基础, 用于单一时间序列。 在此基础上, 我们侧重于一个具体但重要的规模信息类型, 即分辨率/ 时间序列数据的抽样率。 我们然后提出一个算法, 以便利用以往的分辨率数据按顺序预测时间序列。 我们证明, 算法产生的平均预测错误并不大于任何单一分辨率上的最佳算法, 在某些最理想的参数下。 最后, 我们为尺度推算出一个总公式, 并提供进一步的激励性实例。 对合成和真实的时间序列进行实验, 说明我们的方法对于一个广泛的时间序列的潜在适用性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
144+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
19+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2020年8月3日
Arxiv
6+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
144+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
19+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2020年8月3日
Arxiv
6+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员