Sequentially obtained dataset usually exhibits different behavior at different data resolutions/scales. Instead of inferring from data at each scale individually, it is often more informative to interpret the data as an ensemble of time series from different scales. This naturally motivated us to propose a new concept referred to as the scale-based inference. The basic idea is that more accurate prediction can be made by exploiting scale information of a time series. We first propose a nonparametric predictor based on $k$-nearest neighbors with an optimally chosen $k$ for a single time series. Based on that, we focus on a specific but important type of scale information, the resolution/sampling rate of time series data. We then propose an algorithm to sequentially predict time series using past data at various resolutions. We prove that asymptotically the algorithm produces the mean prediction error that is no larger than the best possible algorithm at any single resolution, under some optimally chosen parameters. Finally, we establish the general formulations for scale inference, and provide further motivating examples. Experiments on both synthetic and real data illustrate the potential applicability of our approaches to a wide range of time series models.
翻译:相继获得的数据集通常在不同的数据分辨率/尺度上表现出不同的行为。 与其从每个尺度的数据中单独推断出不同的行为,不如将数据解释为不同尺度的时间序列的组合。 这自然地促使我们提出一个新的概念, 称为基于比额表的推论。 基本的想法是, 利用一个时间序列的尺度信息可以作出更准确的预测。 我们首先提议一个非参数预测器, 以美元最远的邻居为基础, 以最佳选择的美元为基础, 用于单一时间序列。 在此基础上, 我们侧重于一个具体但重要的规模信息类型, 即分辨率/ 时间序列数据的抽样率。 我们然后提出一个算法, 以便利用以往的分辨率数据按顺序预测时间序列。 我们证明, 算法产生的平均预测错误并不大于任何单一分辨率上的最佳算法, 在某些最理想的参数下。 最后, 我们为尺度推算出一个总公式, 并提供进一步的激励性实例。 对合成和真实的时间序列进行实验, 说明我们的方法对于一个广泛的时间序列的潜在适用性。