The task of predicting stochastic behaviors of road agents in diverse environments is a challenging problem for autonomous driving. To best understand scene contexts and produce diverse possible future states of the road agents adaptively in different environments, a prediction model should be probabilistic, multi-modal, context-driven, and general. We present Conditionalizing Variational AutoEncoders via Hypernetworks (CVAE-H); a conditional VAE that extensively leverages hypernetwork and performs generative tasks for high-dimensional problems like the prediction task. We first evaluate CVAE-H on simple generative experiments to show that CVAE-H is probabilistic, multi-modal, context-driven, and general. Then, we demonstrate that the proposed model effectively solves a self-driving prediction problem by producing accurate predictions of road agents in various environments.
翻译:预测不同环境中道路物剂的随机行为是自主驾驶的一个具有挑战性的问题。为了最好地理解现场环境,并产生适应不同环境的公路物剂未来可能的不同状态,预测模型应该是概率的、多模式的、环境驱动的和一般的。我们介绍了通过超网络条件化的多动自动电算器(CVAE-H);有条件的VAE,它广泛利用超网络,并针对像预测任务这样的高层次问题执行基因化任务。我们首先对简单基因实验的CVAE-H进行了评估,以表明CVAE-H是概率性的、多模式的、环境驱动的和一般的。然后,我们证明拟议的模型通过对不同环境中的道路物剂作出准确预测,有效地解决了自我驱动的预测问题。