A tournament graph is a complete directed graph, which can be used to model a round-robin tournament between $n$ players. In this paper, we address the problem of finding a champion of the tournament, also known as Copeland winner, which is a player that wins the highest number of matches. In detail, we aim to investigate algorithms that find the champion by playing a low number of matches. Solving this problem allows us to speed up several Information Retrieval and Recommender System applications, including question answering, conversational search, etc. Indeed, these applications often search for the champion inducing a round-robin tournament among the players by employing a machine learning model to estimate who wins each pairwise comparison. Our contribution, thus, allows finding the champion by performing a low number of model inferences. We prove that any deterministic or randomized algorithm finding a champion with constant success probability requires $\Omega(\ell n)$ comparisons, where $\ell$ is the number of matches lost by the champion. We then present an asymptotically-optimal deterministic algorithm matching this lower bound without knowing $\ell$, and we extend our analysis to three variants of the problem. Lastly, we conduct a comprehensive experimental assessment of the proposed algorithms on a question answering task on public data. Results show that our proposed algorithms speed up the retrieval of the champion up to $13\times$ with respect to the state-of-the-art algorithm that perform the full tournament.


翻译:锦标赛图是一种完全有向图,用于模拟 $n$ 个参赛者之间的循环赛。本文研究在锦标赛图中寻找冠军的问题,即 Copeland 获胜者;他是赢得最多比赛的选手。具体而言,我们旨在研究通过进行少量比赛就能找到冠军的算法。解决这个问题可以加速多个信息检索和推荐系统应用,包括问答、对话搜索等。实际上,这些应用程序经常通过机器学习模型来估计每个配对比赛的胜负,从而使得能够在选手之间引入循环赛,并搜索冠军。我们的贡献是通过进行少量模型推断即可找到冠军。我们证明了任何确定性或随机化算法都需要 $\Omega (\ell n)$ 的比较次数,才能以恒定的成功概率找到冠军,其中 $\ell$ 是冠军输掉的比赛局数。然后,我们提出了一种渐近最优的确定性算法,它不需要知道 $\ell$,并在三个问题变量下扩展了我们的分析。最后,在公共数据上进行了广泛的实验评估。结果表明,相对于执行完整的锦标赛的最新算法,我们提出的算法将冠军的检索加速了多达 $13\times$。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
普林斯顿大学经典书《在线凸优化导论》,178页pdf
专知会员服务
183+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员