The increase in renewable energy on the consumer side gives place to new dynamics in the energy grids. Participants in a microgrid can produce energy and trade it with their peers (peer-to-peer) with the permission of the energy provider. In such a scenario, the stochastic nature of distributed renewable energy generators and energy consumption increases the complexity of defining fair prices for buying and selling energy. In this study, we introduce a reinforcement learning framework to help solve this issue by training an agent to set the prices that maximize the profit of all components in the microgrid, aiming to facilitate the implementation of P2P grids in real-life scenarios. The microgrid considers consumers, prosumers, the service provider, and a community battery. Experimental results on the \textit{Pymgrid} dataset show a successful approach to price optimization for all components in the microgrid. The proposed framework ensures flexibility to account for the interest of these components, as well as the ratio of consumers and prosumers in the microgrid. The results also examine the effect of changing the capacity of the community battery on the profit of the system. The implementation code is available \href{https://github.com/Artifitialleap-MBZUAI/rl-p2p-price-prediction}{here}.
翻译:消费者方面可再生能源的增加使能源网中新的动态成为了消费者方面新的动力的立足点; 微型电网的参与者可以经能源提供者许可,生产能源并与同龄人(同龄人)进行能源交易; 在这种假设中,分布式可再生能源发电机和能源消费的随机性增加了确定公平购买和销售能源价格的复杂性; 在本研究中,我们引入了一个强化学习框架,帮助解决这一问题,方法是培训一个代理商确定价格,使微型电网中所有组成部分的利润最大化,目的是便利在现实生活中实施P2P电网; 微型电网考虑消费者、prosumers、服务供应商和社区电池; 分布式可再生能源发电机的实验结果表明,对微型电网中所有组成部分的价格优化是一个成功的办法; 拟议的框架确保灵活考虑这些组成部分的利益以及微电网中消费者和造价者的比例; 研究结果还审查了改变社区电池的能力对系统利润的影响。 执行代码是可使用的ASTUFI2-APR_UFFR{AFFR_AFFR_AFFR_AFFR_ZGIFFR_A_QGIFFRQ_A_A_AFFRAFFRQ_QQQQQQUFFRA_AFFRFFRQ_Q_QRFFRFFRQ_Q_Q_QQQQQQRFFRFFR_QQ_Q_QRFFRFF_ZSFFR_Q_Q_Q_Q_Q_Q_QRFFFFRFFRFFRFFR_Q_Q_Q_Q_Q_QRFFRFFRFFRFFRFFR_Q_ZSFFR_Q_Q_Q_Q_QRFFRFFRFFRFFR_ZFFR_ZFFRFFRFFRFFRFFRFFRFFRFFR_ZFFRFFR_Z_ZFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFR_Z_Z_Z_ZFFR_Z_ZFFR_Z_ZFFRFFR_ZFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFRFFR