This paper focuses on $\alpha$-divergence minimisation methods for Variational Inference. More precisely, we are interested in algorithms optimising the mixture weights of any given mixture model, without any information on the underlying distribution of its mixture components parameters. The Power Descent, defined for all $\alpha \neq 1$, is one such algorithm and we establish in our work the full proof of its convergence towards the optimal mixture weights when $\alpha <1$. Since the $\alpha$-divergence recovers the widely-used forward Kullback-Leibler when $\alpha \to 1$, we then extend the Power Descent to the case $\alpha = 1$ and show that we obtain an Entropic Mirror Descent. This leads us to investigate the link between Power Descent and Entropic Mirror Descent: first-order approximations allow us to introduce the Renyi Descent, a novel algorithm for which we prove an $O(1/N)$ convergence rate. Lastly, we compare numerically the behavior of the unbiased Power Descent and of the biased Renyi Descent and we discuss the potential advantages of one algorithm over the other.
翻译:本文侧重于 $\ alpha$- divegence 最小化法 。 更确切地说, 我们感兴趣的是, 在没有任何混合物成分参数基本分布信息的情况下, 优化任何特定混合物模型的混合物重量的算法。 用于所有 $alpha\ neq 1 美元 的电源源是一种这样的算法, 我们在工作中充分证明了它在 $\ alpha < 1 美元时会达到最佳混合物重量的趋同。 自从 $\ alpha$- divegence 恢复了广泛使用的前方 Kullback- Leibel, 当 $\ alpha \ \ = 1 美元时, 我们感兴趣的是优化任何混合物混合物模型的混合物重量。 然后我们将能量源扩展到 $\ alpha = 1 美元, 并显示我们得到了 entropic 镜源。 这使我们可以调查能量源与 Entrapic 镜源的联系: 第一阶近似让我们引入Reny be 。 。, sublegrofirum (1/N) abol) ably exquest exquel) abal and the export.