This paper considers the problem of asynchronous distributed multi-agent optimization on server-based system architecture. In this problem, each agent has a local cost, and the goal for the agents is to collectively find a minimum of their aggregate cost. A standard algorithm to solve this problem is the iterative distributed gradient-descent (DGD) method being implemented collaboratively by the server and the agents. In the synchronous setting, the algorithm proceeds from one iteration to the next only after all the agents complete their expected communication with the server. However, such synchrony can be expensive and even infeasible in real-world applications. We show that waiting for all the agents is unnecessary in many applications of distributed optimization, including distributed machine learning, due to redundancy in the cost functions (or {\em data}). Specifically, we consider a generic notion of redundancy named $(r,\epsilon)$-redundancy implying solvability of the original multi-agent optimization problem with $\epsilon$ accuracy, despite the removal of up to $r$ (out of total $n$) agents from the system. We present an asynchronous DGD algorithm where in each iteration the server only waits for (any) $n-r$ agents, instead of all the $n$ agents. Assuming $(r,\epsilon)$-redundancy, we show that our asynchronous algorithm converges to an approximate solution with error that is linear in $\epsilon$ and $r$. Moreover, we also present a generalization of our algorithm to tolerate some Byzantine faulty agents in the system. Finally, we demonstrate the improved communication efficiency of our algorithm through experiments on MNIST and Fashion-MNIST using the benchmark neural network LeNet.


翻译:本文考虑了服务器系统架构上分布不均匀的多试剂优化问题。 在此问题上, 每个代理商都有本地成本, 代理商的目标是集体找到其总成本的最小值。 解决这一问题的标准算法是服务器和代理商合作实施的迭接分布梯度- 白( DGD) 方法。 在同步环境下, 算法在所有代理商完成与服务器的预期通信后才会从一个循环到下一个循环。 但是, 在现实应用中, 每一个代理商都有成本, 甚至不可行。 我们显示, 在所有分配优化应用中, 包括分散的机器学习, 由于成本功能的冗余( 或 Exem 数据 ) 。 具体地说, 我们考虑一个名为 $( r,\ eepslon) 的冗余概念, 意味着原始多试优化问题以美元( 美元) 的准确度从一个复制。 然而, 这种精度的精确度可能是成本( $ $ 美元) 的递增( 美元 ), 我们的代理商在系统上展示了我们总基数( 美元 美元 ) 的递增 的服务器 效率 。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
223+阅读 · 2020年6月5日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
120+阅读 · 2020年5月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
223+阅读 · 2020年6月5日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
120+阅读 · 2020年5月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员