Online social media platforms offer access to a vast amount of information, but sifting through the abundance of news can be overwhelming and tiring for readers. personalised recommendation algorithms can help users find information that interests them. However, most existing models rely solely on observations of user behaviour, such as viewing history, ignoring the connections between the news and a user's prior knowledge. This can result in a lack of diverse recommendations for individuals. In this paper, we propose a novel method to address the complex problem of news recommendation. Our approach is based on the idea of dual observation, which involves using a deep neural network with observation mechanisms to identify the main focus of a news article as well as the focus of the user on the article. This is achieved by taking into account the user's belief network, which reflects their personal interests and biases. By considering both the content of the news and the user's perspective, our approach is able to provide more personalised and accurate recommendations. We evaluate the performance of our model on real-world datasets and show that our proposed method outperforms several popular baselines.


翻译:在线社交媒体平台提供大量信息,但通过大量新闻的筛选,对读者来说是压倒性的和累赘的。 个性化的建议算法可以帮助用户找到他们感兴趣的信息。 然而,大多数现有模式完全依赖于对用户行为的观察,例如查看历史,忽视新闻与用户先前的知识之间的联系。这可能导致缺乏针对个人的不同建议。在本文中,我们提出了一个解决复杂的新闻建议问题的新方法。我们的方法是基于双重观察的理念,即利用带有观察机制的深层神经网络来确定新闻文章的主要重点以及用户对文章的关注。这要通过考虑到用户的信仰网络来实现,这反映了他们的个人兴趣和偏见。通过考虑新闻的内容和用户的观点,我们的方法能够提供更个性化和准确的建议。我们评估了我们关于真实世界数据集的模型的绩效,并表明我们提出的方法超越了几个受欢迎的基线。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员