In this paper we present a deterministic $O(\log\log n)$-round algorithm for the 2-ruling set problem in the Massively Parallel Computation model with $\tilde{O}(n)$ memory; this algorithm also runs in $O(\log\log n)$ rounds in the Congested Clique model. This is exponentially faster than the fastest known deterministic 2-ruling set algorithm for these models, which is simply the $O(\log \Delta)$-round deterministic Maximal Independent Set algorithm due to Czumaj, Davies, and Parter (SPAA 2020). Our result is obtained by derandomizing the 2-ruling set algorithm of Kothapalli and Pemmaraju (FSTTCS 2012).
翻译:在本文中,我们展示了一种确定值$O(\log\log n) 的四舍五入算法,用于使用$\tilde{O}(n) $(n) 内存的大规模平行计算模型中的2组问题;这种算法还以美元(log\log\log n) 圆形计算,在 Congestic Clique 模型中以美元($O(log\log\log n) 圆形算法运行。这比这些模型中已知的最快的确定值2组算法指数更快,后者仅仅是Czumaj、Davies和Parter(SPA 2020年)的美元($O(log\log\log n) log n) 。 我们的结果是通过拆解Kothapalli和Pemmaraju的2组算法(FSTTCS)(2012年)。