We give the first linear-time counting algorithm for processes in anonymous 1-interval-connected dynamic networks with a leader. As a byproduct, we are able to compute in $3n$ rounds every function that is deterministically computable in such networks. If explicit termination is not required, the running time improves to $2n$ rounds, which we show to be optimal up to a small additive constant (this is also the first non-trivial lower bound for counting). As our main tool of investigation, we introduce a combinatorial structure called "history tree", which is of independent interest. This makes our paper completely self-contained, our proofs elegant and transparent, and our algorithms straightforward to implement. In recent years, considerable effort has been devoted to the design and analysis of counting algorithms for anonymous 1-interval-connected networks with a leader. A series of increasingly sophisticated works, mostly based on classical mass-distribution techniques, have recently led to a celebrated counting algorithm in $O({n^{4+ \epsilon}} \log^{3} (n))$ rounds (for $\epsilon>0$), which was the state of the art prior to this paper. Our contribution not only opens a promising line of research on applications of history trees, but also demonstrates that computation in anonymous dynamic networks is practically feasible, and far less demanding than previously conjectured.


翻译:我们给出了第一个匿名的线性计时算算算算算算算法, 在匿名的、 互连互连的动态网络中, 我们有一个领导者。 作为副产品, 我们可以用3n美元计算出在网络中可以确定计算的每一功能。 如果不需要明确终止, 运行时间将改进为$2n 回合, 我们显示这是最优的添加数常数( 这也是第一个非三连线的下限点算法 ) 。 作为我们的主要调查工具, 我们引入了一个称为“ 历史树” 的组合式算法结构, 这是独立感兴趣的。 这使我们的文件完全自成一体, 我们的证据优雅透明, 我们的算法直截了当。 近几年来, 我们花了很多精力设计和分析匿名的1年间连接网络的算法。 一系列日益复杂的工程, 大多以传统的大众分配技术为基础, 最近导致以$O( {n ⁇ 4+\ \ hisilo } (n) 来庆祝计算算算算算算算算算算算算算法, 。 这对独立感兴趣的是一回合( $\\ siurlonlon) ) 和我们之前的“ rental> ” listal compeciental recal list pre recaldestrationalate) est recalate) list pre pre pre pricalpalpalpalpalpalutututd) 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员