As one of the three main pillars of fine-grained complexity theory, the 3SUM problem explains the hardness of many diverse polynomial-time problems via fine-grained reductions. Many of these reductions are either directly based on or heavily inspired by P\u{a}tra\c{s}cu's framework involving additive hashing and are thus randomized. Some selected reductions were derandomized in previous work [Chan, He; SOSA'20], but the current techniques are limited and a major fraction of the reductions remains randomized. In this work we gather a toolkit aimed to derandomize reductions based on additive hashing. Using this toolkit, we manage to derandomize almost all known 3SUM-hardness reductions. As technical highlights we derandomize the hardness reductions to (offline) Set Disjointness, (offline) Set Intersection and Triangle Listing -- these questions were explicitly left open in previous work [Kopelowitz, Pettie, Porat; SODA'16]. The few exceptions to our work fall into a special category of recent reductions based on structure-versus-randomness dichotomies. We expect that our toolkit can be readily applied to derandomize future reductions as well. As a conceptual innovation, our work thereby promotes the theory of deterministic 3SUM-hardness. As our second contribution, we prove that there is a deterministic universe reduction for 3SUM. Specifically, using additive hashing it is a standard trick to assume that the numbers in 3SUM have size at most $n^3$. We prove that this assumption is similarly valid for deterministic algorithms.
翻译:暂无翻译