Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
翻译:控制区网络(CAN)协议的入侵探测需要现代方法才能与其他电气结构进行竞争。 指纹入侵探测系统(IDS)为解决这一问题提供了有希望的新办法。 通过对已知ECU的网络流量进行定性,危险信息可能会受到歧视。在本条中,使用指纹IDS的修改版本,通过神经网络培训,对网络流量进行步骤反应和光谱特征描述;加上功能集减缩和超分光计调,该方法达到了信任ECU流量的99.4%的检测率。