Twin-width is a recently introduced graph parameter with applications in algorithmics, combinatorics, and finite model theory. For graphs of bounded degree, finiteness of twin-width is preserved by quasi-isometry. Thus, through Cayley graphs, it defines a group invariant. We prove that groups which are abelian, hyperbolic, ordered, solvable, or with polynomial growth, have finite twin-width. Twin-width can be characterised by excluding patterns in the self-action by product of the group elements. Based on this characterisation, we propose a strengthening called uniform twin-width, which is stable under constructions such as group extensions, direct products, and direct limits. The existence of finitely generated groups with infinite twin-width is not immediate. We construct one using a result of Osajda on embeddings of graphs into groups. This implies the existence of a class of finite graphs with unbounded twin-width but containing $2^{O(n)} \cdot n!$ graphs on vertex set $\{1,\dots,n\}$, settling a question asked in a previous work.
翻译:双线是一个最近引入的图形参数, 其应用在算法、 组合式和有限模型理论中。 对于约束度的图形, 双线的有限性由准异度保留。 因此, 它通过 Cayley 图形定义了一个群异性 。 我们证明, 双线或多角度增长的组具有一定的双线。 双线可以通过群体元素的产品在自我动作中排除模式来定性。 基于此特性, 我们提议一个称为统一的双线的增强型图, 在群扩展、 直接产品和直接限制等构造下保持稳定 。 有无限双线的有限生成的组的存在不是直接的。 我们用 Osajda 将图形嵌入组合的结果来构建一个组。 这意味着存在一种具有未约束的双维特性但包含$( n)\\do\ don) 的定型图, 在前一个工作设置上, $( n)\\\\\\\\\\ a lax palgrogrobs) 。