With the help of Score Distillation Sampling (SDS) and the rapid development of neural 3D representations, some methods have been proposed to perform 3D editing such as adding additional geometries, or overwriting textures. However, generalized 3D non-rigid editing task, which requires changing both the structure (posture or composition) and appearance (texture) of the original object, remains to be challenging in 3D editing field. In this paper, we propose Plasticine3D, a novel text-guided fine-grained controlled 3D editing pipeline that can perform 3D non-rigid editing with large structure deformations. Our work divides the editing process into a geometry editing stage and a texture editing stage to achieve separate control of structure and appearance. In order to maintain the details of the original object from different viewpoints, we propose a Multi-View-Embedding (MVE) Optimization strategy to ensure that the guidance model learns the features of the original object from various viewpoints. For the purpose of fine-grained control, we propose Embedding-Fusion (EF) to blend the original characteristics with the editing objectives in the embedding space, and control the extent of editing by adjusting the fusion rate. Furthermore, in order to address the issue of gradual loss of details during the generation process under high editing intensity, as well as the problem of insignificant editing effects in some scenarios, we propose Score Projection Sampling (SPS) as a replacement of score distillation sampling, which introduces additional optimization phases for editing target enhancement and original detail maintenance, leading to better editing quality. Extensive experiments demonstrate the effectiveness of our method on 3D non-rigid editing tasks


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年2月15日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员