We propose a novel approach to lifelong learning, introducing a compact encapsulated support structure which endows a network with the capability to expand its capacity as needed to learn new tasks while preventing the loss of learned tasks. This is achieved by splitting neurons with high semantic drift and constructing an adjacent network to encode the new tasks at hand. We call this the Plastic Support Structure (PSS), it is a compact structure to learn new tasks that cannot be efficiently encoded in the existing structure of the network. We validate the PSS on public datasets against existing lifelong learning architectures, showing it performs similarly to them but without prior knowledge of the task and in some cases with fewer parameters and in a more understandable fashion where the PSS is an encapsulated container for specific features related to specific tasks, thus making it an ideal "add-on" solution for endowing a network to learn more tasks.


翻译:我们建议一种新的终生学习方法,引入一种包装式的紧凑式支持结构,使网络有能力扩大学习新任务的能力,同时防止失去学到的任务。这是通过将具有高度语义漂移的神经元分解和建造一个相邻网络来编码手头的新任务来实现的。我们称之为塑料支持结构(PS),这是一个学习无法在网络现有结构中有效编码的新任务的紧凑式结构。我们用现有的终身学习结构来验证公共数据集中的PSS,显示其运行与它们相似,但显示其运行方式与它们相似,但事先对任务没有了解,在某些情况下,参数更少,而且更可以理解,因为PSS是一个包装特定任务具体特征的包装容器,因此它是一个理想的“附加式”解决方案,可以赋予网络更多的任务。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员