Using task-specific components within a neural network in continual learning (CL) is a compelling strategy to address the stability-plasticity dilemma in fixed-capacity models without access to past data. Current methods focus only on selecting a sub-network for a new task that reduces forgetting of past tasks. However, this selection could limit the forward transfer of relevant past knowledge that helps in future learning. Our study reveals that satisfying both objectives jointly is more challenging when a unified classifier is used for all classes of seen tasks-class-Incremental Learning (class-IL)-as it is prone to ambiguities between classes across tasks. Moreover, the challenge increases when the semantic similarity of classes across tasks increases. To address this challenge, we propose a new CL method, named AFAF, that aims to Avoid Forgetting and Allow Forward transfer in class-IL using fix-capacity models. AFAF allocates a sub-network that enables selective transfer of relevant knowledge to a new task while preserving past knowledge, reusing some of the previously allocated components to utilize the fixed-capacity, and addressing class-ambiguities when similarities exist. The experiments show the effectiveness of AFAF in providing models with multiple CL desirable properties, while outperforming state-of-the-art methods on various challenging benchmarks with different semantic similarities.


翻译:在持续学习中,使用神经网络中特定任务的组成部分是解决固定能力模型中固定能力模型中稳定-持久性难题的令人信服的战略。目前的方法仅侧重于为新任务选择子网络,以减少对过去任务的忘记。然而,这一选择可能会限制有助于未来学习的相关过去知识的前瞻性转让。我们的研究显示,如果对所有类别的任务使用统一的分类方法,即分类方法(分类方法),而所有类别的任务 -- -- 类别 -- -- 强化学习(类级) -- -- 容易在任务之间出现模糊不清之处,那么共同实现这两个目标就更具挑战性。此外,当不同任务类别之间的语义相似性增加时,挑战就会增加。为了应对这一挑战,我们提议了一个名为AFAFAF的新的CL方法,目的是避免忘记和允许利用固定能力模型在类中进行前瞻性转让,从而帮助今后的学习。AFAFAF分配了一个子网络,以便能够将相关知识有选择地转让给新任务,同时保留过去的知识,同时重新使用以前分配的一些组成部分来利用固定能力,并在存在相似之处解决类别矛盾。为了应对这一挑战,我们提出的实验表明AFAFAFAF的相似性模型在提供具有多重性特点的相同性模型时,同时提供不同的CL性模型。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员