The recruitment process is crucial to an organization's ability to position itself for success, from finding qualified and well-fitting job candidates to impacting its output and culture. Therefore, over the past century, human resources experts and industrial-organizational psychologists have established hiring practices such as attracting candidates with job ads, gauging a candidate's skills with assessments, and using interview questions to assess organizational fit. However, the advent of big data and machine learning has led to a rapid transformation in the traditional recruitment process as many organizations have moved to using artificial intelligence (AI). Given the prevalence of AI-based recruitment, there is growing concern that human biases may carry over to decisions made by these systems, which can amplify the effect through systematic application. Empirical studies have identified prevalent biases in candidate ranking software and chatbot interactions, catalyzing a growing body of research dedicated to AI fairness over the last decade. This paper provides a comprehensive overview of this emerging field by discussing the types of biases encountered in AI-driven recruitment, exploring various fairness metrics and mitigation methods, and examining tools for auditing these systems. We highlight current challenges and outline future directions for developing fair AI recruitment applications, ensuring equitable candidate treatment and enhancing organizational outcomes.
翻译:暂无翻译