We present Polite Teacher, a simple yet effective method for the task of semi-supervised instance segmentation. The proposed architecture relies on the Teacher-Student mutual learning framework. To filter out noisy pseudo-labels, we use confidence thresholding for bounding boxes and mask scoring for masks. The approach has been tested with CenterMask, a single-stage anchor-free detector. Tested on the COCO 2017 val dataset, our architecture significantly (approx. +8 pp. in mask AP) outperforms the baseline at different supervision regimes. To the best of our knowledge, this is one of the first works tackling the problem of semi-supervised instance segmentation and the first one devoted to an anchor-free detector.
翻译:我们介绍Polite Deacher, 这是一种简单而有效的半监督性分解方法。 拟议的架构依赖于师生相互学习框架。 为了过滤吵闹的假标签, 我们使用信任阈值来隔离框, 并用面具打分。 这种方法已经与单级无锚探测器CenterMask进行了测试。 在COCO 2017 val数据集上进行了测试, 我们的架构( 面罩 AP. +8 pp. ) 大大超过不同监管制度的基线。 据我们所知, 这是解决半监督分解问题的第一批工程之一, 也是第一个专门处理无锚探测器的工程之一 。