We present a novel approach to efficiently compute tight non-convex enclosures of the image through neural networks with ReLU, sigmoid, or hyperbolic tangent activation functions. In particular, we abstract the input-output relation of each neuron by a polynomial approximation, which is evaluated in a set-based manner using polynomial zonotopes. Our proposed method is especially well suited for reachability analysis of neural network controlled systems since polynomial zonotopes are able to capture the non-convexity in both, the image through the neural network as well as the reachable set. We demonstrate the superior performance of our approach compared to other state of the art methods on various benchmark systems.
翻译:我们提出了一个新颖的方法,通过ReLU、sigmoid或双曲正切活化功能的神经网络,有效计算图像的紧密非隐形外壳。特别是,我们用一个多元近似来抽取每个神经神经元的输入-输出关系,该近似以基于定数的方式使用多分子的zonootopes进行评估。我们建议的方法特别适合对神经网络控制系统进行可及性分析,因为多神经zonootopes能够同时捕捉非共性、通过神经网络的图像以及可及集。我们展示了我们的方法相对于各种基准系统其他最先进的方法的优异性表现。