We study the problem of empirical minimization for variance-type functionals over functional classes. Sharp non-asymptotic bounds for the excess variance are derived under mild conditions. In particular, it is shown that under some restrictions imposed on the functional class fast convergence rates can be achieved including the optimal non-parametric rates for expressive classes in the non-Donsker regime under some additional assumptions. Our main applications include variance reduction and optimal control.
翻译:我们研究了将功能类别不同功能的实验性最小化问题,在温和条件下可以得出极端差异的尖锐非无药可治的界限,特别表明,根据对功能类别规定的某些限制,可以实现快速趋同率,包括一些额外假设的非唐克制度中表达型的最佳非参数率,我们的主要应用包括减少差异和最佳控制。