Navigation in varied and dynamic indoor environments remains a complex task for autonomous mobile platforms. Especially when conditions worsen, typical sensor modalities may fail to operate optimally and subsequently provide inapt input for safe navigation control. In this study, we present an approach for the navigation of a dynamic indoor environment with a mobile platform with a single or several sonar sensors using a layered control system. These sensors can operate in conditions such as rain, fog, dust, or dirt. The different control layers, such as collision avoidance and corridor following behavior, are activated based on acoustic flow queues in the fusion of the sonar images. The novelty of this work is allowing these sensors to be freely positioned on the mobile platform and providing the framework for designing the optimal navigational outcome based on a zoning system around the mobile platform. Presented in this paper is the acoustic flow model used, as well as the design of the layered controller. Next to validation in simulation, an implementation is presented and validated in a real office environment using a real mobile platform with one, two, or three sonar sensors in real time with 2D navigation. Multiple sensor layouts were validated in both the simulation and real experiments to demonstrate that the modular approach for the controller and sensor fusion works optimally. The results of this work show stable and safe navigation of indoor environments with dynamic objects.
翻译:各种动态室内环境的导航仍然是自主移动平台的一项复杂任务。 特别是当条件恶化时, 典型的传感器模式可能无法最优化地运作, 并随后为安全导航控制提供不完善的输入。 在本研究中, 我们展示了使用单声纳传感器和单声纳传感器的动态室内环境导航方法。 这些传感器可以在雨、 雾、 灰尘或泥土等条件下运行。 不同的控制层, 如避免碰撞和行为后走廊, 是根据声纳图像融合的声波流阵列启动的。 这项工作的新颖之处是允许这些传感器自由定位在移动平台上, 并为在移动平台周围的分区系统上设计最佳导航结果提供框架。 本文介绍的是使用的声波流模型, 以及层控制器的设计。 在进行模拟验证之前, 在真实的办公环境中, 使用真正的移动平台和1、 2 或 3 声纳传感器实时导航启动。 多个传感器布局在移动平台上自由定位, 并在移动平台周围的分区系统上为设计最佳导航结果提供框架。 本文中展示了稳定的动态控制器, 。