The visual world naturally exhibits an imbalance in the number of object or scene instances resulting in a \emph{long-tailed distribution}. This imbalance poses significant challenges for classification models based on deep learning. Oversampling instances of the tail classes attempts to solve this imbalance. However, the limited visual diversity results in a network with poor representation ability. A simple counter to this is decoupling the representation and classifier networks and using oversampling only to train the classifier. In this paper, instead of repeatedly re-sampling the same image (and thereby features), we explore a direction that attempts to generate meaningful features by estimating the tail category's distribution. Inspired by ideas from recent work on few-shot learning, we create calibrated distributions to sample additional features that are subsequently used to train the classifier. Through several experiments on the CIFAR-100-LT (long-tail) dataset with varying imbalance factors and on mini-ImageNet-LT (long-tail), we show the efficacy of our approach and establish a new state-of-the-art. We also present a qualitative analysis of generated features using t-SNE visualizations and analyze the nearest neighbors used to calibrate the tail class distributions. Our code is available at https://github.com/rahulvigneswaran/TailCalibX.
翻译:视觉世界自然会显示导致 \ emph{ lax- lax- second 分布} 的物体或场景数量不平衡。 这种不平衡给基于深层次学习的分类模型带来了重大挑战。 过度抽样的尾品类实例试图解决这种不平衡现象。 但是,视觉多样性有限导致一个代表性能力差的网络。 与此简单的反差是将代表性和分类网络脱钩,并且只使用过度抽样来训练分类员。 在本文中,我们不是反复重试同一图像( 并因此重现特征 ), 而是探索一个方向, 试图通过估计尾品类别的分布来产生有意义的特征。 在最近关于少片学习的工作的启发下, 我们创建了经过校准的分布样本, 用于培训分类师的更多特征。 在C- 100- LT( 长尾部) 数据组中, 使用各种不平衡因素和迷你- ImageNet- LT( 长尾部), 我们展示了我们的方法的有效性, 并建立了一个新的状态- 艺术。 我们还根据最近的工作, 我们用Mex- Squal/ abal labalal amalalal ameval amal amal ambs to salibalation.