We critically assess the performance of several variants of dual and dual-primal domain decomposition strategies in problems with fixed subdomain partitioning and high heterogeneity in stiffness coefficients typically arising in topology optimization of modular structures. Our study considers Total FETI and FETI Dual-Primal methods along with three enhancements: k-scaling, full orthogonalization of the search directions, and considering multiple search-direction at once, which gives us twelve variants in total. We test these variants both on academic examples and snapshots of topology optimization iterations. Based on the results, we conclude that (i) the original methods exhibit very slow convergence in the presence of severe heterogeneity in stiffness coefficients, which makes them practically useless, (ii) the full orthogonalization enhancement helps only for mild heterogeneity, and (iii) the only robust method is FETI Dual-Primal with multiple search direction and k-scaling.
翻译:在固定子域分割和僵硬系数高度异化等问题上,我们批判地评估了模块结构的表层优化通常会产生的双重和双重地段分解战略的若干变种的性能。我们的研究考虑了FETI和FETI的双重地段法以及三项增强措施:K-缩放、搜索方向的完全正正正正分化,同时考虑多个搜索方向,这给我们提供了总共12个变种。我们根据这些变种的学术实例和表层优化迭代的缩影测试了这些变种。我们根据结果得出结论:(一) 原始方法在硬度系数存在严重异质化的情况下表现出非常缓慢的趋同,这使得它们实际上毫无用处,(二) 完全或分解的增强只有助于温度异性,以及(三) 唯一有力的方法是具有多重搜索方向和K-缩放法。