Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. Roughly speaking, a non-malleable code for a family of tampering functions guarantees that no adversary can tamper (using functions from this family) the encoding of a given message into the encoding of a related distinct message. Non-malleable secret sharing schemes are a strengthening of non-malleable codes which satisfy additional privacy and reconstruction properties. We first focus on the $2$-split-state tampering model, one of the strongest and most well-studied adversarial tampering models. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of \emph{classical} messages. Furthermore, until the recent work by Aggarwal, Boddu, and Jain (arXiv 2022), adversaries with quantum capabilities and \emph{shared entanglement} had not been considered, and it is a priori not clear whether previous schemes remain secure in this model. In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. We also present explicit constructions of such schemes that achieve low-error non-malleability.
翻译:暂无翻译