The retriever-reader framework is popular for open-domain question answering (ODQA), where a retriever samples for the reader a set of relevant candidate passages from a large corpus. A key assumption behind this method is that high relevance scores from the retriever likely indicate high answerability from the reader, which implies a high probability that the retrieved passages contain answers to a given question. In this work, we empirically dispel this belief and observe that recent dense retrieval models based on DPR often rank unanswerable counterfactual passages higher than their answerable original passages. To address such answer-unawareness in dense retrievers, we seek to use counterfactual samples as additional training resources to better synchronize the relevance measurement of DPR with the answerability of question-passage pairs. Specifically, we present counterfactually-Pivoting Contrastive Learning (PiCL), a novel representation learning approach for passage retrieval that leverages counterfactual samples as pivots between positive and negative samples in their learned embedding space. We incorporate PiCL into the retriever training to show the effectiveness of PiCL on ODQA benchmarks and the robustness of the learned models.
翻译:检索器-阅读器框架在开放领域问答(ODQA)中很受欢迎,其中检索器从一个大语料库中为阅读器取样一组相关的候选段落。该方法的一个关键假设是,检索器的高相关度分数很可能表明阅读器高可回答性,这意味着检索到的段落很可能包含给定问题的答案。但在本研究中,我们经验性地驳斥了这种信念,并观察到基于DPR的最近密集检索模型经常将不可答案的反事实段落排名靠前,甚至比答案本身更靠前。为解决这种密集检索模型中与答案不相干的问题,我们试图使用反事实样本作为额外训练资源,以更好地将DPR的相关度度量与问题-段落对的可回答性进行同步。具体而言,我们提出了反事实关键对比学习(PiCL),一种新的段落检索表示学习方法,它利用反事实样本作为在学习的嵌入空间中积极样本和负样本之间的关键指标。我们将PiCL纳入检索器训练中,以展示PiCL在ODQA基准测试中的有效性以及所学模型的稳健性。