Finding a reduction of complex, high-dimensional dynamics to its essential, low-dimensional "heart" remains a challenging yet necessary prerequisite for designing efficient numerical approaches. Machine learning methods have the potential to provide a general framework to automatically discover such representations. In this paper, we consider multiscale stochastic systems with local slow-fast time scale separation and propose a new method to encode in an artificial neural network a map that extracts the slow representation from the system. The architecture of the network consists of an encoder-decoder pair that we train in a supervised manner to learn the appropriate low-dimensional embedding in the bottleneck layer. We test the method on a number of examples that illustrate the ability to discover a correct slow representation. Moreover, we provide an error measure to assess the quality of the embedding and demonstrate that pruning the network can pinpoint an essential coordinates of the system to build the slow representation.
翻译:在本文中,我们考虑将复杂、高维的动态缩小到其基本、低维的“心脏”方面,这仍然是设计高效数字方法的一个挑战性但必要的先决条件。机器学习方法有可能提供一个自动发现这种表达方式的总框架。在本文中,我们考虑使用局部慢速时间尺度分离的多尺度随机系统,并提出在人工神经网络中编码地图的新方法,从系统中提取缓慢的表达方式。网络的结构包括一个编码器-解码器对,我们以监督的方式培训它来学习适当的低维嵌入瓶颈层的方法。我们用一些实例测试该方法,以显示发现正确缓慢的表达方式的能力。此外,我们提供了一种错误的衡量尺度来评估嵌入质量,并表明运行网络可以定位系统的基本坐标,以建立缓慢的表达方式。