To derive the auto-covariance function from a sampled and time-limited signal or the cross-covariance function from two such signals, the mean values must be estimated and removed from the signals. If no a priori information about the correct mean values is available and the mean values must be derived from the time series themselves, the estimates will be biased. For the estimation of the variance from independent data the appropriate correction is widely known as Bessel's correction. Similar corrections for the auto-covariance and for the cross-covariance functions are shown here, including individual weighting of the samples. The corrected estimates then can be used to correct also the variance estimate in the case of correlated data. The programs used here are available online at http://sigproc.nambis.de/programs.
翻译:为了从采样和时间限定的信号中派生出自协方差函数,或者从两个这样的信号中派生出交叉协方差函数,必须先估计并从信号中删除均值。如果没有有关正确均值的先验信息,而必须从时间序列中导出均值的估计值,则估计值将存在偏差。对于从独立数据估计方差,适当的校正因为称为Bessel校正。本文提出了类似的自协方差和交叉协方差函数的校正,包括个别样本的加权。然后,可以使用校正后的估计值来校正相关数据的方差估计值。本文中使用的程序可在http://sigproc.nambis.de/programs网站上获得。