Verification of properties expressed as-regular languages such as LTL can benefit hugely from stutter-insensitivity, using a diverse set of reduction strategies. However properties that are not stutter-insensitive, for instance due to the use of the neXt operator of LTL or to some form of counting in the logic, are not covered by these techniques in general. We propose in this paper to study a weaker property than stutter-insensitivity. In a stutter insensitive language both adding and removing stutter to a word does not change its acceptance, any stuttering can be abstracted away; by decomposing this equivalence relation into two implications we obtain weaker conditions. We define a shortening insensitive language where any word that stutters less than a word in the language must also belong to the language. A lengthening insensitive language has the dual property. A semi-decision procedure is then introduced to reliably prove shortening insensitive properties or deny lengthening insensitive properties while working with a reduction of a system. A reduction has the property that it can only shorten runs. Lipton's transaction reductions or Petri net agglomerations are examples of eligible structural reduction strategies. An implementation and experimental evidence is provided showing most nonrandom properties sensitive to stutter are actually shortening or lengthening insensitive. Performance of experiments on a large (random) benchmark from the model-checking competition indicate that despite being a semi-decision procedure, the approach can still improve state of the art verification tools.


翻译:以常规语言表示的LTL等财产的核查,如果使用一套多样化的减排战略,可以极大地得益于对口不敏感。但是,由于使用LTL的纳克斯特操作员或逻辑中某种形式的计算,因此不具有对口不敏感的特性,这些技术一般没有涵盖这些特性。我们在本文件中提议研究一种比结口不敏感特性更弱的较弱属性。在一个敏感语言中,增加和删除一个字的结节不会改变对一个字的接受度,因此,通过将这种等同关系分解为两个影响,我们获得较弱的条件。我们定义了一种较不敏感语言,因为使用LTLT的纳克斯特操作员或某种逻辑计算方法中的某些词也必须属于该语言。延长敏感语言具有双重属性。然后采用一种半决定程序,可靠地证明,在减少一个系统的同时,会缩短敏感特性或排除敏感特性的长度。 任何消减量的状态只能缩短;利普顿交易的削减或Petri对等式的实验性能性能显示一个巨大的实验性能的大幅降低性能。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月27日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月27日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员