Behavioral science researchers have shown strong interest in disaggregating within-person relations from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method of within-person variability score-based causal inference for estimating joint effects of time-varying continuous treatments by effectively controlling for stable traits. After explaining the assumed data-generating process and providing formal definitions of stable trait factors, within-person variability scores, and joint effects of time-varying treatments at the within-person level, we introduce the proposed method, which consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated from stable traits of that person, are first calculated using weights based on a best linear correlation preserving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a potential outcome approach, either marginal structural models (MSMs) or structural nested mean models (SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on SEM, the present method does not assume linearity for observed time-varying confounders at the within-person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly robust to model misspecifications in how observed time-varying confounders are functionally related with treatments/predictors and outcomes at the within-person level. Through simulation, we show that the proposed method can recover causal parameters well and that causal estimates might be severely biased if one does not properly account for stable traits. An empirical application using data regarding sleep habits and mental health status from the Tokyo Teen Cohort study is also provided.
翻译:行为科学研究者对使用纵向数据将人际差异(稳定特性)与人际差异(稳定特性)区分开来表现出强烈的兴趣。在本文中,我们提出一种基于人内部差异的因果推断方法,通过有效控制稳定特性来估计时间变化连续处理的共同影响,通过有效控制稳定特性来估计时间变化连续处理的共同影响。在解释假设数据生成过程并提供稳定特征因素的正式定义、人内部差异分数和在人内部进行时间变化处理的共同影响之后,我们引入了拟议方法,该方法由两步分析组成。根据人内部差异参数的稳定性特征进行分类,首先根据基于最佳线性关系进行计算,通过结构等式模型(SEM)来估计时间变化连续处理的结果。在解释假设数据生成过程之后,或者通过对稳定结构嵌套平均平均模型(SNMM)来进行正式定义。与完全依赖SEM的方法不同,目前的方法并不假定在观察到的时间变化时间变化水平上对人际关系进行直线性计算,而目前的方法则是用稳定的直径直径直径直的直径直径直径直径直算算算算算。我们所观察到的直径直径直径直径直径直比比比比比比直的数值,我们所观察到的数值,在GV的数值直比比比比比比比比直的数值,我们所观察到的直地显示了。我们所观察到的数值,我们所观察到的直地算法,我们所观察到的直地算法,因为GV法,我们所观察到的直地平地算法,我们所观察到的直地算法,因此在GV法是使用了。我们所观察到的直地算法。 我们强调了比比比比力法,我们所观察到的直地基级法,我们所观测到的直地算法,我们用了。