The representation of the posterior is a critical aspect of effective variational autoencoders (VAEs). Poor choices for the posterior have a detrimental impact on the generative performance of VAEs due to the mismatch with the true posterior. We extend the class of posterior models that may be learned by using undirected graphical models. We develop an efficient method to train undirected posteriors by showing that the gradient of the training objective with respect to the parameters of the undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates. We apply these gradient estimators for training discrete VAEs with Boltzmann machine posteriors and demonstrate that undirected models outperform previous results obtained using directed graphical models as posteriors.
翻译:后方的表示方式是有效变式自动采集器(VAEs)的一个关键方面。后方的错误选择对VAEs的基因性能有不利影响,因为与真实的后方的不匹配。我们扩展了通过使用非定向图形模型可以学习的类后方模型。我们开发了一种有效的方法来培训无定向后端的后方模型,通过Markov连锁 Monte Carlo的更新,显示培训目标中与非定向后方软件参数有关的梯度可以通过反向分析计算来计算。我们运用这些梯度测算器与Boltzmann机器后方模型培训独立的VAEs,并证明未定向的模型优于以定向图形模型作为后方的后方结果。