The Feferman-Vaught theorem provides a way of evaluating a first order sentence $\varphi$ on a disjoint union of structures by producing a decomposition of $\varphi$ into sentences which can be evaluated on the individual structures and the results of these evaluations combined using a propositional formula. This decomposition can in general be non-elementarily larger than $\varphi$. We show that for first order sentences in prenex normal form with a fixed number of quantifier alternations, such a decomposition, further with the same number of quantifier alternations, can be obtained in time elementary in the size of $\varphi$. We obtain this result as a consequence of a more general decomposition theorem that we prove for a family of infinitary logics we define. We extend these results by considering binary operations other than disjoint union, in particular sum-like operations such as ordered sum and NLC-sum, that are definable using quantifier-free interpretations.
翻译:Feferman-Vaught exorem 提供了一种方法,通过将美元分解成对个别结构和这些评价的结果结合使用一种建议公式来评价对结构脱节的一等判决,来评价对结构脱节的第一等判决$\varphie$。这种分解一般不小于$\varphi$。我们用一个固定数量的分解变位法来显示,在前异于正常形式的一等判决中,先有固定数量的分解,这种分解,再有相同数量的分解分解,可以在基本时间以$/varphi为单位进行分解。我们之所以取得这一结果,是因为我们用一个更普遍的分解,我们所定义的不完全的逻辑体系所证明的是这种分解。我们通过考虑除不连结之外的其他二进式行动,特别是像定总和和NLC-sum这样的操作,通过量化的解分解,而可以确定。