We establish verifiable conditions under which Metropolis-Hastings (MH) algorithms with a position-dependent proposal covariance matrix will or will not have the geometric rate of convergence. Some of the diffusions based MH algorithms like the Metropolis adjusted Langevin algorithm (MALA) and the pre-conditioned MALA (PCMALA) have a position-independent proposal variance. Whereas, for other modern variants of MALA like the manifold MALA (MMALA) that adapt to the geometry of the target distributions, the proposal covariance matrix changes in every iteration. Thus, we provide conditions for geometric ergodicity of different variations of the Langevin algorithms. These results have important practical implications as these provide crucial justification for the use of asymptotically valid Monte Carlo standard errors for Markov chain based estimates. The general conditions are verified in the context of conditional simulation from the two most popular generalized linear mixed models (GLMMs), namely the binomial GLMM with the logit link and the Poisson GLMM with the log link. Empirical comparison in the framework of some spatial GLMMs shows that the computationally less expensive PCMALA with an appropriately chosen pre-conditioning matrix may outperform the MMALA.
翻译:我们建立了可核查的条件,使大都会-Hastings(MH)算法(具有基于位置的建议常态矩阵)具有或不会具有几何趋同率。一些基于扩散的MH算法(如大都会经调整的Langevin算法(MALA)和预先设定的MAMALA(PCMALA)等基于位置的MALA算法(PCMALA)具有一个与位置无关的建议书差异。而对于《MALA(MMALA)》中适应目标分布的几何分布的多种现代变体(MMALA),建议每迭接线性矩阵的变化。因此,我们为朗埃文算法不同变异的几何异性提供了条件。这些结果具有重要的实际影响,为在马尔科夫链的估算中使用无症状有效的蒙特卡洛标准错误提供了至关重要的理由。一般条件是在两种最受欢迎的通用线性混合模型(GLMMMM(GLM)进行有条件的模拟的情况下得到验证的验证的,即Binomial GLMMMM(与logitit)链接的某些链接和Poissonson GLMMMMM(GLMMMMM(PLMMMMM)与所选择的磁M)与磁MLM(P-MMMM)与所选择的磁框架的平基模型的平基)比的模型比的模型的模型的比。