Functional data analysis has been extensively conducted. In this study, we consider a partially functional model, under which some covariates are scalars and have linear effects, while some other variables are functional and have unspecified nonlinear effects. Significantly advancing from the existing literature, we consider a model with interactions between the functional and scalar covariates. To accommodate long-tailed error distributions which are not uncommon in data analysis, we adopt the quantile technique for estimation. To achieve more interpretable estimation, and to accommodate many practical settings, we assume that the functional covariate effects are locally sparse (that is, there exist subregions on which the effects are exactly zero), which naturally leads to a variable/model selection problem. We propose respecting the "main effect, interaction" hierarchy, which postulates that if a subregion has a nonzero effect in an interaction term, then its effect has to be nonzero in the corresponding main functional effect. For estimation, identification of local sparsity, and respect of the hierarchy, we propose a penalization approach. An effective computational algorithm is developed, and the consistency properties are rigorously established under mild regularity conditions. Simulation shows the practical effectiveness of the proposed approach. The analysis of the Tecator data further demonstrates its practical applicability. Overall, this study can deliver a novel and practically useful model and a statistically and numerically satisfactory estimation approach.


翻译:功能数据分析已经广泛进行。 在本研究中,我们考虑的是部分功能模型,在这种模型下,一些功能变量是卡路里,具有线性效果,而其他一些变量是功能性的,具有未说明的非线性效应。从现有文献中,我们考虑的是功能和卡路里变量之间相互作用的模式。为了适应数据分析中并不罕见的长尾错误分布,我们采用了量化估算技术。为了实现更可解释的估计,并适应许多实际环境,我们假设功能变量效应是本地稀少的(即存在效果完全为零的次区域),这自然导致变量/模型选择问题。我们建议尊重“主要效果、互动”的等级,假设如果一个次区域在互动期内具有非零效果,那么其效果在相应的主要功能效果中是非零。为了估算、确定地方的宽度和尊重等级,我们建议一种惩罚性方法。我们制定了有效的计算算法,在适度的定期条件下,一致性是严格的。我们建议尊重“主要效果、互动性”的等级分级。我们提议尊重“主要效果”的统计方法,并展示其实际应用性分析方法的实用性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员