We introduce a new notion of neighboring databases for coverage problems such as Max Cover and Set Cover under differential privacy. In contrast to the standard privacy notion for these problems, which is analogous to node-privacy in graphs, our new definition gives a more fine-grained privacy guarantee, which is analogous to edge-privacy. We illustrate several scenarios of Set Cover and Max Cover where our privacy notion is desired one for the application. Our main result is an $\epsilon$-edge differentially private algorithm for Max Cover which obtains an $(1-1/e-\eta,\tilde{O}(k/\epsilon))$-approximation with high probability. Furthermore, we show that this result is nearly tight: we give a lower bound show that an additive error of $\Omega(k/\epsilon)$ is necessary under edge-differential privacy. Via group privacy properties, this implies a new algorithm for $\epsilon$-node differentially private Max Cover which obtains an $(1-1/e-\eta,\tilde{O}(fk/\epsilon))$-approximation, where $f$ is the maximum degree of an element in the set system. When $f\ll k$, this improves over the best known algorithm for Max Cover under pure (node) differential privacy, which obtains an $(1-1/e,\tilde{O}(k^2/\epsilon))$-approximation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
26+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员