This paper presents a cross channel context model for latents in deep image compression. Generally, deep image compression is based on an autoencoder framework, which transforms the original image to latents at the encoder and recovers the reconstructed image from the quantized latents at the decoder. The transform is usually combined with an entropy model, which estimates the probability distribution of the quantized latents for arithmetic coding. Currently, joint autoregressive and hierarchical prior entropy models are widely adopted to capture both the global contexts from the hyper latents and the local contexts from the quantized latent elements. For the local contexts, the widely adopted 2D mask convolution can only capture the spatial context. However, we observe that there are strong correlations between different channels in the latents. To utilize the cross channel correlations, we propose to divide the latents into several groups according to channel index and code the groups one by one, where previously coded groups are utilized to provide cross channel context for the current group. The proposed cross channel context model is combined with the joint autoregressive and hierarchical prior entropy model. Experimental results show that, using PSNR as the distortion metric, the combined model achieves BD-rate reductions of 6.30% and 6.31% over the baseline entropy model, and 2.50% and 2.20% over the latest video coding standard Versatile Video Coding (VVC) for the Kodak and CVPR CLIC2020 professional dataset, respectively. In addition, when optimized for the MS-SSIM metric, our approach generates visually more pleasant reconstructed images.
翻译:本文为深图像压缩的潜伏提供了一个跨频道背景模型。 一般而言, 深图像压缩是基于自动编码框架, 将原始图像转换为编码器的潜层, 从解码器的量化潜层中恢复重建的图像。 变换通常与酶模型相结合, 估计四分层潜层在算术编码中的概率分布。 目前, 广泛采用联合自动递增和上层前先导导模型, 以从高潜层和定量化潜在图像的当地背景中捕捉全球背景。 在本地背景下, 广泛采用的 2D 掩码组合只能捕捉到空间环境。 然而, 我们观察到, 不同频道在解码器中存在强烈的关联性。 为了使用交叉导导导导导值, 我们建议将潜值分成几个组, 先前的编码组用来为当前组提供交叉信道背景环境, 拟议的跨频道背景添加模型与共同自动递增和等级级的C- DRV 模式结合, 用于前摄像标的 C- IM 和 RB- IM- bral- broal 模型, 。 实验结果显示, 最新的 Restal- bral- 模型, 和 Ral- bral- mal- mal- bal- mal- sal- sal- sal- sal- sal- sal- sal 和 和 等 和 Ral- sal- bal- sal- sal- sal- sal- sal- bal- sal- sal- sildal- smald- sild- sild- smald- sild- sild- sal- sal- sal- sal- smd- sal- sal- sal- sal-