Transfer learning seeks to improve the generalization performance of a target task by exploiting the knowledge learned from a related source task. Central questions include deciding what information one should transfer and when transfer can be beneficial. The latter question is related to the so-called negative transfer phenomenon, where the transferred source information actually reduces the generalization performance of the target task. This happens when the two tasks are sufficiently dissimilar. In this paper, we present a theoretical analysis of transfer learning by studying a pair of related perceptron learning tasks. Despite the simplicity of our model, it reproduces several key phenomena observed in practice. Specifically, our asymptotic analysis reveals a phase transition from negative transfer to positive transfer as the similarity of the two tasks moves past a well-defined threshold.
翻译:转让学习旨在通过利用从相关源任务中获取的知识来提高目标任务的一般性表现; 中心问题包括决定应转让哪些信息以及何时转让可以产生效益; 后一个问题与所谓的消极转让现象有关,即转让的源信息实际上降低了目标任务的一般性表现; 这是在两个任务完全不同的情况下发生的; 在本文件中,我们通过研究一对相关的透视学习任务,对转让学习进行理论分析; 尽管我们的模式简单,但它重复了实践中观察到的若干关键现象。 具体地说,我们无症状分析显示,随着两项任务的相似性超越了明确界定的门槛,从负转移到正转移的阶段已经从负转移到正转移。