We address the problem of unsupervised domain adaptation under the setting of generalized target shift (joint class-conditional and label shifts). For this framework, we theoretically show that, for good generalization, it is necessary to learn a latent representation in which both marginals and class-conditional distributions are aligned across domains. For this sake, we propose a learning problem that minimizes importance weighted loss in the source domain and a Wasserstein distance between weighted marginals. For a proper weighting, we provide an estimator of target label proportion by blending mixture estimation and optimal matching by optimal transport. This estimation comes with theoretical guarantees of correctness under mild assumptions. Our experimental results show that our method performs better on average than competitors across a range domain adaptation problems including \emph{digits},\emph{VisDA} and \emph{Office}. Code for this paper is available at \url{https://github.com/arakotom/mars_domain_adaptation}.
翻译:在设定通用目标转换(联合级条件和标签转换)时,我们处理不受监督的域适应问题。对于这个框架,我们理论上表明,为了便于概括化,有必要了解一种潜在的代表性,即边际和类条件分布在不同的域间对齐。为此,我们提出一个学习问题,最大限度地减少源域中的重要性加权损失和加权边际之间的瓦塞斯坦距离。对于适当的加权,我们通过混合混合物估计和最佳运输的最佳匹配来提供一个目标标签比例的估测符。这一估计在理论上保证了轻度假设的正确性。我们的实验结果表明,我们的方法在包括\emph{digits},\emph{VisTDA}和\emph{Office}在内的一系列领域的适应问题中的平均表现优于竞争者。本文的代码可在\url{https://github.com/arakotom/mars_domain_doadpatation}。