Data poisoning considers cases when an adversary maliciously inserts and removes training data to manipulate the behavior of machine learning algorithms. Traditional threat models of data poisoning center around a single metric, the number of poisoned samples. In consequence, existing defenses are essentially vulnerable in practice when poisoning more samples remains a feasible option for attackers. To address this issue, we leverage timestamps denoting the birth dates of data, which are often available but neglected in the past. Benefiting from these timestamps, we propose a temporal threat model of data poisoning and derive two novel metrics, earliness and duration, which respectively measure how long an attack started in advance and how long an attack lasted. With these metrics, we define the notions of temporal robustness against data poisoning, providing a meaningful sense of protection even with unbounded amounts of poisoned samples. We present a benchmark with an evaluation protocol simulating continuous data collection and periodic deployments of updated models, thus enabling empirical evaluation of temporal robustness. Lastly, we develop and also empirically verify a baseline defense, namely temporal aggregation, offering provable temporal robustness and highlighting the potential of our temporal modeling of data poisoning.
翻译:数据中毒是指敌对方恶意插入和删除培训数据以操纵机器学习算法行为的情况。传统的数据中毒威胁模型围绕一个指标,即中毒样品的数量。因此,当更多的样品中毒仍然是攻击者可行的选择时,现有的防御手段在实际中基本上是脆弱的。为了解决这一问题,我们利用时间戳来标明数据出生日期,这些数据过去往往可以得到,但过去却被忽视。从这些时间戳中受益,我们提出了一个数据中毒时间威胁模型,并产生了两个新的指标,即:即:时间强度和持续时间,分别衡量攻击的开始时间和持续时间。我们用这些指标界定了对数据中毒时间的稳健性概念,提供了有意义的保护感,即使有毒样品的数量没有限制,也提供了有意义的保护感。我们提出了一个评价协议,用以模拟持续的数据收集和定期部署最新模型,从而能够对时间稳健性进行经验评估。最后,我们制定并用经验核查基线防御,即:时间汇总,提供可证实的时间稳健度,并突出我们数据中毒时间模型的潜力。