In this paper we address the problem of indoor localization using magnetic field data in two setups, when data is collected by (i) human-held mobile phone and (ii) by localization robots that perturb magnetic data with their own electromagnetic field. For the first setup, we revise the state of the art approaches and propose a novel extended pipeline to benefit from the presence of magnetic anomalies in indoor environment created by different ferromagnetic objects. We capture changes of the Earth's magnetic field due to indoor magnetic anomalies and transform them in multi-variate times series. We then convert temporal patterns into visual ones. We use methods of Recurrence Plots, Gramian Angular Fields and Markov Transition Fields to represent magnetic field time series as image sequences. We regress the continuous values of user position in a deep neural network that combines convolutional and recurrent layers. For the second setup, we analyze how magnetic field data get perturbed by robots' electromagnetic field. We add an alignment step to the main pipeline, in order to compensate the mismatch between train and test sets obtained by different robots. We test our methods on two public (MagPie and IPIN'20) and one proprietary (Hyundai department store) datasets. We report evaluation results and show that our methods outperform the state of the art methods by a large margin.
翻译:在本文中,我们用磁场数据在两种设置中处理室内本地化问题,即使用磁场数据,当数据由(一) 人类拥有的移动电话和(二) 以自己的电磁场干扰磁数据的地方化机器人收集数据时,我们处理室内本地化问题。在第一个设置中,我们修改工艺状态,提出新的扩展管道,以受益于不同铁磁天体在室内环境中产生的磁异常。我们用室内磁场异常变化来捕捉地球磁场的变化,并在多变时间序列中将其转化。我们然后将时间模式转换为视觉模式。我们使用Recurence Plots、Gramian Agram Fal Fields和Markov Transports的本地化机器人方法作为图像序列来代表磁场时间序列。我们重新审视了将电动和经常性层相结合的深层神经网络中的用户位置的持续值。我们分析磁场数据如何被机器人电磁场的电磁场扰动场渗透。我们再向主管道添加一个调整步骤,以补偿不同机器人获得的火车和测试数据集之间的不匹配。 我们测试了我们的IP20 的大型数据库和大型数据格式报告。 我们测试了我们用两种方式展示了我们的磁场的方法。