Urban planners and policy makers face the challenge of creating livable and enjoyable cities for larger populations in much denser urban conditions. While the urban microclimate holds a key role in defining the quality of urban spaces today and in the future, the integration of wind microclimate assessment in early urban design and planning processes remains a challenge due to the complexity and high computational expense of computational fluid dynamics (CFD) simulations. This work develops a data-driven workflow for real-time pedestrian wind comfort estimation in complex urban environments which may enable designers, policy makers and city residents to make informed decisions about mobility, health, and energy choices. We use a conditional generative adversarial network (cGAN) architecture to reduce the computational computation while maintaining high confidence levels and interpretability, adequate representation of urban complexity, and suitability for pedestrian comfort estimation. We demonstrate high quality wind field approximations while reducing computation time from days to seconds.
翻译:城市规划者和决策者面临着在更稠密的城市条件下为较大人口创建可居住和可享受的城市的挑战。虽然城市微观气候在确定当今和未来城市空间质量方面发挥着关键作用,但将风微气候评估纳入早期城市设计和规划进程仍是一项挑战,原因是计算流体动态模拟的复杂和计算费用高昂。这项工作为在复杂的城市环境中实时行人风安慰估计开发了数据驱动工作流程,使设计者、决策者和城市居民能够就流动性、健康和能源选择作出知情的决定。我们使用一个有条件的基因对抗网络架构来减少计算,同时保持高度的可信度和可解释性、城市复杂性的充分代表性和行人舒适估计的适宜性。我们展示了高质量的风场近似值,同时将计算时间从几天缩短到几秒钟。