ILU smoothers can be effective in the algebraic multigrid $V$-cycle. However, direct triangular solves are comparatively slow on GPUs. Previous work by Chow and Patel \cite{ChowPatel2015} and Antz et al. \cite{Anzt2015} proposed an iterative approach to solve these systems. Unfortunately, when the Jacobi iteration is applied to highly non-normal upper or lower triangular factors, the iterations will diverge. An ILU smoother is introduced for classical Ruge-St\"uben C-AMG that applies row and/or column scaling to mitigate the non-normality of the upper triangular factor. Our approach facilitates the use of Jacobi iteration in place of the inherently sequential triangular solve. Because the scaling is applied to the upper triangular factor, it can be done locally for a diagonal block of the global matrix. An ILUT Schur complement smoother, that solves the Schur system along subdomain (MPI rank) boundaries using GMRES, maintains a constant iteration count and improves strong-scaling. Numerical results and parallel performance are presented for the Nalu-Wind and PeleLM \cite{PeleLM} pressure solvers. For large problem sizes, GMRES$+$AMG with iterative triangular solves executes at least five times faster than when using direct solves on the NREL Eagle supercomputer.


翻译:ILU 滑动器在代数多方格 $V 周期中可以有效。 但是, 直接三角解决方案在 GPU 上相对比较慢。 Chow 和 Patel {ChowPatel2015} 和 Antz et al.\ cite{Anzt2015} 和 Antz 和 Antz 等 提议了一个迭接方法来解决这些系统。 不幸的是, 当 Jacobi 迭代应用到高度非正常的上三角或下三角因素时, 循环将产生差异。 在古典 Ruge- St\'uben C- AMG 中引入了 ILUU 平滑动器, 应用行和/ 列缩放来减轻上三角要素的不常态性。 我们的方法有助于使用 cocobi 校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校内。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员