Unmanned Aerial Vehicles (UAVs) are increasingly being utilized in various private and commercial applications, e.g., traffic control, parcel delivery, and Search and Rescue (SAR) missions. Machine Learning (ML) methods used in UAV-Assisted Sensor Networks (UASNETs) and, especially, in Deep Reinforcement Learning (DRL) face challenges such as complex and lengthy model training, gaps between simulation and reality, and low sampling efficiency, which conflict with the urgency of emergencies, such as SAR missions. In this paper, an In-Context Learning (ICL)-Data Collection Scheduling (ICLDC) system is proposed as an alternative to DRL in emergencies. The UAV collects sensory data and transmits it to a Large Language Model (LLM), which creates a task description in natural language. From this description, the UAV receives a data collection schedule that must be executed. A verifier ensures safe UAV operations by evaluating the schedules generated by the LLM and overriding unsafe schedules based on predefined rules. The system continuously adapts by incorporating feedback into the task descriptions and using this for future decisions. This method is tested against jailbreaking attacks, where the task description is manipulated to undermine network performance, highlighting the vulnerability of LLMs to such attacks. The proposed ICLDC significantly reduces cumulative packet loss compared to both the DQN and Maximum Channel Gain baselines. ICLDC presents a promising direction for intelligent scheduling and control in UASNETs.
翻译:暂无翻译