Numerical simulations are widely used to predict the behavior of physical systems, with Bayesian approaches being particularly well suited for this purpose. However, experimental observations are necessary to calibrate certain simulator parameters for the prediction. In this work, we use a multi-output simulator to predict all its outputs, including those that have never been experimentally observed. This situation is referred to as the transposition context. To accurately quantify the discrepancy between model outputs and real data in this context, conventional methods cannot be applied, and the Bayesian calibration must be augmented by incorporating a joint model error across all outputs. To achieve this, the proposed method is to consider additional numerical input parameters within a hierarchical Bayesian model, which includes hyperparameters for the prior distribution of the calibration variables. This approach is applied on a computer code with three outputs that models the Taylor cylinder impact test with a small number of observations. The outputs are considered as the observed variables one at a time, to work with three different transposition situations. The proposed method is compared with other approaches that embed model errors to demonstrate the significance of the hierarchical formulation.


翻译:数值模拟被广泛用于预测物理系统的行为,其中贝叶斯方法尤其适用于此目的。然而,需要实验观测来校准模拟器的某些参数以实现预测。在本研究中,我们采用多输出模拟器来预测其所有输出,包括那些从未被实验观测过的输出。这种情况被称为转置情境。为了在此情境下精确量化模型输出与真实数据之间的差异,传统方法无法直接应用,必须通过纳入跨所有输出的联合模型误差来增强贝叶斯校准。为实现这一目标,所提出的方法是在分层贝叶斯模型中考虑额外的数值输入参数,该模型包含校准变量先验分布的超参数。该方法应用于一个具有三个输出的计算机代码,该代码以少量观测数据模拟泰勒圆柱冲击试验。输出被逐一视为观测变量,以处理三种不同的转置情境。所提出的方法与其它嵌入模型误差的方法进行了比较,以证明分层建模框架的重要性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员