LiDAR depth completion is a task that predicts depth values for every pixel on the corresponding camera frame, although only sparse LiDAR points are available. Most of the existing state-of-the-art solutions are based on deep neural networks, which need a large amount of data and heavy computations for training the models. In this letter, a novel non-learning depth completion method is proposed by exploiting the local surface geometry that is enhanced by an outlier removal algorithm. The proposed surface geometry model is inspired by the observation that most pixels with unknown depth have a nearby LiDAR point. Therefore, it is assumed those pixels share the same surface with the nearest LiDAR point, and their respective depth can be estimated as the nearest LiDAR depth value plus a residual error. The residual error is calculated by using a derived equation with several physical parameters as input, including the known camera intrinsic parameters, estimated normal vector, and offset distance on the image plane. The proposed method is further enhanced by an outlier removal algorithm that is designed to remove incorrectly mapped LiDAR points from occluded regions. On KITTI dataset, the proposed solution achieves the best error performance among all existing non-learning methods and is comparable to the best self-supervised learning method and some supervised learning methods. Moreover, since outlier points from occluded regions is a commonly existing problem, the proposed outlier removal algorithm is a general preprocessing step that is applicable to many robotic systems with both camera and LiDAR sensors.


翻译:LiDAR 深度完成是一项任务,它预测了相应相机框架上每个像素的深度值,尽管只有少量的 LiDAR 点是可用的。 现有最先进的解决方案大多以深神经网络为基础, 这些网络需要大量的数据和大量计算来培训模型。 在本信中, 提出了一个新的非学习深度完成方法, 方法是利用由外部清除算法强化的当地表面几何方法。 拟议的地表几何模型受到以下观察的启发: 大多数深度未知的像素在附近有一个 LiDAR 点。 因此, 假设这些像素与最近的LDAR 点共享相同的表面, 其各自的深度可以被估计为最接近的 LIDAR 深度值加上一个剩余错误。 剩余错误的计算方法是利用一个衍生的方程, 包括已知的相机内在参数、 估计的正常矢量, 并抵消图像平面上的距离。 拟议的方法进一步强化了一种外部移除算法, 目的是将LIDAR 点与最近的LDAR 点与最近的LDAR 点共享。 在 KITTI 中, 的常规学习过程中, 和 现有的常规方法都是一种最佳的学习方法。

0
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
69+阅读 · 2019年6月16日
超详细干货 | 三维语义分割概述及总结
计算机视觉life
32+阅读 · 2019年3月19日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
VIP会员
相关VIP内容
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
69+阅读 · 2019年6月16日
超详细干货 | 三维语义分割概述及总结
计算机视觉life
32+阅读 · 2019年3月19日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员