Face anonymization with generative models have become increasingly prevalent since they sanitize private information by generating virtual face images, ensuring both privacy and image utility. Such virtual face images are usually not identifiable after the removal or protection of the original identity. In this paper, we formalize and tackle the problem of generating identifiable virtual face images. Our virtual face images are visually different from the original ones for privacy protection. In addition, they are bound with new virtual identities, which can be directly used for face recognition. We propose an Identifiable Virtual Face Generator (IVFG) to generate the virtual face images. The IVFG projects the latent vectors of the original face images into virtual ones according to a user specific key, based on which the virtual face images are generated. To make the virtual face images identifiable, we propose a multi-task learning objective as well as a triplet styled training strategy to learn the IVFG. We evaluate the performance of our virtual face images using different face recognizers on diffident face image datasets, all of which demonstrate the effectiveness of the IVFG for generate identifiable virtual face images.
翻译:使用基因化模型的面部匿名已经越来越普遍,因为它们通过生成虚拟脸部图像来洗净私人信息,确保隐私和图像实用性。 在移除或保护原始身份后,这类虚拟脸部图像通常无法识别。 在本文件中,我们正式确定并解决生成可识别的虚拟脸部图像的问题。 我们的虚拟脸部图像与原始保护隐私的图像有视觉不同之处。 此外, 这些图像还带有新的虚拟身份, 可以直接用于面部识别。 我们建议使用一个可识别的虚拟脸部生成器( IVFG) 来生成虚拟脸部图像。 IVFG 将原始脸部图像的潜在矢量按用户特定键进行虚拟矢量项目, 以生成虚拟脸部图像为基础。 为了让虚拟脸部图像可以识别, 我们提出了一个多功能学习目标, 以及一个三重式培训策略, 学习IVFG。 我们用不同面部图像识别器对虚拟脸部图像的性能进行评估, 所有这些都展示了IVFG在生成可识别的虚拟脸图像上的有效性。