Control Lyapunov function is a central tool in stabilization. It generalizes an abstract energy function -- a Lyapunov function -- to the case of controlled systems. It is a known fact that most control Lyapunov functions are non-smooth -- so is the case in non-holonomic systems, like wheeled robots and cars. Frameworks for stabilization using non-smooth control Lyapunov functions exist, like Dini aiming and steepest descent. This work generalizes the related results to the stochastic case. As the groundwork, sampled control scheme is chosen in which control actions are computed at discrete moments in time using discrete measurements of the system state. In such a setup, special attention should be paid to the sample-to-sample behavior of the control Lyapunov function. A particular challenge here is a random noise acting on the system. The central result of this work is a theorem that states, roughly, that if there is a, generally non-smooth, control Lyapunov function, the given stochastic dynamical system can be practically stabilized in the sample-and-hold mode meaning that the control actions are held constant within sampling time steps. A particular control method chosen is based on Moreau-Yosida regularization, in other words, inf-convolution of the control Lyapunov function, but the overall framework is extendable to further control schemes. It is assumed that the system noise be bounded almost surely, although the case of unbounded noise is briefly addressed.
翻译:控制 Lyapunov 函数是稳定的中心工具。 它将抽象的能量函数 -- -- 一种 Lyapunov 函数 -- -- 概括为受控系统的情况。 已知的事实是, 大多数控制 Lyapunov 函数是非光学系统的情况, 比如轮式机器人和汽车。 使用非光控 Lyapunov 函数的稳定框架是存在的, 像 Dini 瞄准和最陡峭的下降。 这项工作将相关结果概括为随机的。 由于基础、 抽样控制机制的选择, 即使用系统状态的离散测量在不连续时刻计算控制动作。 在这种设置中, 多数控制 Lyapunov 函数的样本到抽样行为行为。 这里的一个特殊挑战是使用非光控 Lyapunov 函数来稳定稳定稳定。 这项工作的核心结果是, 大致地说, 如果存在一个一般非光学的、 控制 Lyapunov 函数, 给定的不透明动态系统几乎在不连续的瞬间进行计算。 在常规的取样系统中, 定置定的常规的动作是其他步骤。 。 在常规的常规的常规控制中, 定置中, 定序中, 定的常规的常规的动作是其他的动作是固定的, 。