项目名称: 分子束外延生长统计模型动力学标度行为的理论研究
项目编号: No.11304377
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 寻之朋
作者单位: 中国矿业大学
项目金额: 25万元
中文摘要: 非平衡状态下表面界面粗化生长动力学是凝聚态与统计物理学领域内的重要研究课题,而Wolf-Villain模型和Das Sarma-Tamborenea模型由于成功地描述了分子束外延(MBE)生长过程而成为该领域内两个极其重要的模型。本项目的研究内容主要是:对描述分子束外延生长的统计模型的动力学行为进行相关的理论研究,具体的研究内容可以分为三个方面:(1)利用Family-Vicsek动力学标度及奇异动力学标度律,对表面界面生长过程的动力学标度行为及奇异动力学标度行为进行分析,并探讨导致生长表面界面出现奇异标度行为的微观物理机制;(2)基于Schramm Loewner evolution理论,研究(2+1)维生长模型饱和表面等高线的共形不变性,对饱和生长表面的形貌进行分析;(3)将生长的基底由欧几里得空间推广到非欧几里得空间,探讨基底的不完整性影响生长表面界面动力学标度行为的物理机制。
中文关键词: 动力学粗化;标度;动力学行为;普适类;
英文摘要: Kinetic roughening of surfaces and interfaces under non-equilibrium conditions had long been investigated as an important research subject in the field of condensed matter physics and statistical physics. The Wolf-Villain model and Das Sarma-Tamborenea model, due to successfully describing the MBE process, became two very important models in this field. The main contents of this project are as follows: The dynamic scaling behaviors of the statistical models of MBE will be investigated theoretically. The concrete contents can be divided into three aspects. Firstly, by employing the Family-Vicsek scaling and the anomalous scaling, the dynamic precesses will be studied so as to discuss the microscopic physical mechanisms of roughness surfaces exhibiting the anomalous scaling behavior. Secondly, the contour lines of the saturated surfaces of the (2+1)-dimensional models will be analyzed based on the Schramm Loewner evolution theory,to investigate the morphologies of these saturated surfaces. Then, in order to discuss the microscopic mechanisms influencing the dynamic behavior of growth interfaces by changing the structure of the substrates, the substrates will be generalized from Euclidean spaces to non-Euclidean.
英文关键词: kinetic roughening;scaling;dynamic behavior;universality class;